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LETTER TO THE EDITOR 

The size and number of rings on the square lattice 

A J Guttmann: and I G Entingt 
T Department of Mathematics, University of Melbourne,  Parkville, Victoria 3052, Australia 
7 CSIRO Division of Atmospheric Research, Private Bag 1, Mordialloc. Victoria 3195, 
Australia 

Received 10 November 1987 

Abstract. We have calculated the number of self-avoiding polygons on the square lattice 
to S6 steps, and  the caliper size to 54 steps. Analysis of the generating function permits 
estimates of the connective constant ,U = 2.638 l5XS r IO-.' and  the critical exponents o = 

0.500 06 = 0.000 06 and  v = 0.753 T 0.007. The singularity structure of the polygon generating 
function is found to be consistent with a correction to scaling exponent 1 = 1.5, as predicted 
by Nienhuis. The confluent part, however, maps into the additive analytic term due  to the 
value of the exponent a. 

This paper builds on earlier work of Enting (1980, hereafter referred to as I ) ,  Enting 
and Guttmann (1985, hereafter referred to as 11) and Privman and Rudnick (1985). 
We previously obtained 46 terms of the polygon generating function ( I I ) ,  while Privman 
and Rudnick (1985) obtained 28 terms in the radius of gyration and caliper-size 
distribution series. 

By rewriting our earlier program to most effectively utilise the virtual memory 
aspects of the operating systems on the various computers we used, and by judicious 
data structuring to reduce page faulting as far as possible, we have been able to obtain 
the number of square lattice polygons to 54 steps. Further, the number of 56-step 
polygons was obtained by adding the number of convex 56-step polygons, as discussed 
in Guttmann and Enting (1988, hereafter referred to as 111). The sum of the spans of 
the polygons in a given lattice direction d,  and the sum of the square of the spans d %  
were obtained to 54 steps. The first and second moments of the caliper size are defined 
by 

(Dn) = d J P ,  and (Dz,) = d?,/P,, ( 1 )  

respectively, and one expects ( D Y )  = n"". 
The number of self-avoiding rings of n steps, U,,, per site of the square lattice 

includes only rings that cannot be mapped into one another by translation. Rings that 
are equivalent under rotations or reflections but not translations are regarded as distinct. 
The techniques of enumeration used in I and I1 classify rings according to the smallest 
rectangle that can be drawn around them. The notation U, , . I  specifies the number of 
rings for which the smallest circumscribing rectangle is i x j  steps (in I we denoted the 
rectangles by the number of sites along each edge). The generating function g,, is 
defined by 
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In I it was shown how transfer-matrix techniques could be used to evaluate G,,, which 
is the generating function of rings that span the full length j of an i x j rectangle and 
fit within the’width i. Thus 

and 

g,)= G,-2G,-,,,+ G,-2.1. ( 3 b )  

Because the symmetry g,, = g,,, determining G, (and hence g,]) for i s k will enumer- 
ate all rings of up to 4k+2  steps. 

In order to determine the caliper or spanning moments, Privman and Rudnick 
(1985) list s, , for n 28 where 

The corresponding generating function is 

s,(x) =C s n  txn = E  g,. 
n I 

In  order to determine Si(x) correctly to order x ~ ~ + ~  the summation in ( 5 )  can be written 
as 

and 

Hence the enumeration techniques described in 1 can be used to determine the Si(x) 
and consequently the caliper-moment series ( D )  and (D’) defined (Privman er al 1984) 
as 

The determination of S,(x) does not require any more information than was required 
to determine the G, and in particular the sizes of the vectors involved in the transfer- 
matrix calculations are unchanged. We have thus been able to repeat and extend the 
calculations reported in I1 for rectangles up to width 13 steps, and so determine the 
caliper moments, in principle, to order x54. The algorithm used is fully described in 
1 and 11. Because of the huge integers involved, the calculations have previously been 
done in modular arithmetic, modulo a large prime. Originally, this was repeated for 
distinct primes until sufficient information was obtained to reconstitute the coefficients. 
This meant that the program had to be run four or five times for each prime. As each 
run for 54-step polygons takes 30 d on a VAX 8650 (of this only 36 h CPU time is used, 
but with 6 x  lo7 page faults, the program is disc i /o bound) it is highly desirable to 
reduce the number of runs. This was done by using the method of differential 
approximants (originally called the recurrence relation method by its originators 
Guttmann and Joyce (1972)) to predict subsequent coefficients. Given the series to 50 
terms, say, the 52nd term is predicted by about ten different approximants. These 
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predictions are found to agree among themselves to 10 or 11 decimal digits, and this 
information is utilised to reduce the number of primes needed to two. Once the number 
of 52-step polygons was found in this way the process was iterated to find the number 
of 54-step polygons. Our procedure can be regarded as using differential approximants 
to give the most significant digits of p ? , ,  while performing the transfer-matrix calculation 
modulo q gives the least significant digit in a base q representation of pn. The validity 
of this approach is demonstrated by comparison with 11. In that paper we predicted 
that p,,=5814401 613 000000. From table 1 we now see that this is correct to all 
quoted non-zero digits. 

However, the transfer-matrix calculations enumerate most of the polygons of 56 
steps. The only exceptions are those that fit into rectangles whose minimal bounding 
rectangle has perimeter 56. We call polygons whose perimeter is equal to the perimeter 
of their minimal bounding rectangle convex polygons and they can be enumerated to 
any order as shown in 111. We also accumulated the caliper spans d, and d ; .  We 
give in table 1 a listing of all these quantities. Subsequently, a confirmatory run with 
a third prime verified all our predicted coefficients. 

The resource demands of the enumeration program are quite considerable. Our 
program development (enumerating polygons to 50 steps) was carried out on a DEC 
Micro Vax I 1  with 5 Mb of main memory and 160 Mb of disc capacity, running in 
single-user mode. The program was very slow to run, being limited by disc transfers. 

Table 1. Coefficients of the polygon generating function pz, , .  the sum of the linear spans 
of all n-step polygons d,,, and the sum of the squared linear spans d i , $ .  

2 1 1 1 
3 2 3 5 
4 7 14 30 
5 28 70 186 
6 124 370 1164 
7 588 2 028 7 344 
8 2 938 11 452 46 732 
9 15 268 66 172 299 604 

IO 81 826 389 416 1 932 900 
12 537 542 11 449 572 2 326 202 

12 2 521 270 I4 070 268 81 705 782 
13 14 385 376 86 010 680 534663 812 
14 83 290 424 530 576 780 3511466838 
15 488 384 528 3298906810 23136724382 
16 2895432660 20 653 559 846 152888000934 
17 17332874364 130099026600 1012925595468 
18 104653427012 823 979 294 284 6726766841438 
19 636737003384 5244162058026 44767 880394634 
20 3900770002646 33523 117491920 298522284224824 
21 24045500114388 215 150177410088 1994187071224056 
22 149059814328236 I385839069 134800 13 343458013982572 
23 928782423033008 8956173544332434 89420609914983 270 
24 5814401613289290 58056703069399056 600088861692380354 
25 36556766640745936 377396656568011618 4 032 377 457 462 571 694 
26 230757492737449636 2459614847765495754 27 129080022839863318 
27 1461972662850874916 16068572108927106202 182726605700552001998 
28 9293993428791901042 
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By changing to a Webster disc controller with 2 Mb of cache memory, execution speed 
was improved by a factor of 2.2. This still implied a prohibitive run time at the next 
level of 54-step polygons, which requires a single array of over 100 Mb. 

The program was then transferred to a DEC VAX 8650, a general purpose time- 
sharing machine. The program ran in 30 d, though requiring only 36 h of CPU time, 
and amassed 60 million page faults. The program was run again, with another prime, 
on a newly installed Cyber 990, with an early, and slowish, version of the Fortran 
compiler. To keep storage within bounds, i.e. arrays no bigger than 100 Mb, requires 
2-byte integers. These were created on the Cyber by equivalencing the array to an 
array of (2-byte) characters. Using regular integers would have required 0.5 G b  of 
virtual memory. The computer was only moderately loaded, and the program ran in 
5 d, taking about 7.7 h of CPU time, and 13.5 million page faults were recorded. 

To extend the series further is feasible in principle but, as the foregoing shows, 
massive computing resources are needed. In fact, the speed of a supercomputer is not 
the principal requirement; what is needed is rather a computer with large amounts of 
physical rather than virtual memory. With such an architecture, a microcomputer CPU 

chip such as a Motorola 68020 or Intel 80286/80386 could probably match or even 
outperform a supercomputer in terms of turnaround time, at least for the calculations 
to date. In the absence of such a machine it is not considered realistic to extend the 
series further unless some remarkable benefit were to be attached to two further terms. 
Additionally our existing program would require a number of minor modifications to 
enumerate longer series because control vectors and other parameters of the program 
would exceed the range of the usual 32-bit integer. 

The remarkable length of these series follows from the computational complexity 
of the algorithm used. The complexity is dominated by the calculation of a vector of 
partial generating functions. Each component of the vector corresponds to a distinct 
allowable way in which a polygon can cut a line of cross section in the bounding 
rectangle. The components of the vector hold polynomials, or truncated power series. 
In  topological terms, the definition of 'allowable' is given in I. 

Algebraically, each allowable intersection corresponds to an ordered m-tuple 
( n ,  , . . . , n,) subject to n, = 0, 1 , 2  where m = width (in bonds) + 2. The number of 1 
must equal the number of 2, and reading from left to right the number of 2 can never 
exceed the number of 1. The algorithm evolves by moving the cross-sectional line so 
as to include one additional site, and generating a new vector from the old. These 
algebraic constraints can be shown to give rise to a sequence which grows exponentially 
at a rate that is asymptotically 3", where n is the width of the containing rectangle. 
The precise size of the vectors can be determined by considering m-tuples of 0, 1, 2 
such that, reading from left to right, the number of 2 never exceeds the number of 1. 
If  we let r,,,, be the number of such m-tuples with n more 1 than 2 then 

r10 = 1 ((0)) (sa) 

r , ,  = 1 ((1)) (8b) 

r l n  = O  n > l  (8c )  

rnmn = r m - l . n  + r , , - , , ,  + r,,,. n 2 1 (9a)  

r m ~  = r m  ~ I  ,O + rm - I ,  I  . (96) 
The size of the vector required for the enumeration of polygons of width W is rH +2 ,0 .  

In practice we use vectors that are slightly larger because we are hash addressing, with 
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the m-tuples as a key, to access the vector elements. We can show that rw.+230 is the 
coefficient of x W + ’  in the expansion of y ( x ) ,  defined by 

1 
y(x)  = - [ 1 - x - 2x2 - (1 - 2x - 3x2)”2]. (10) 2x’ 

Increasing the width by 1 allows four additional steps in the polygon, and so the 
growth rate is 3”4 or 1.316.. . . This can be compared to the connective constant of 
2.638,.  . , which would be the growth rate of a conventional counting algorithm. Thus 
at 56 steps the algorithm we have used is faster by a factor of about 10l2. Thus a 
conventional algorithm would have to run for a time comparable to the lifetime of the 
universe on the world’s fastest computer to achieve the same results as those presented 
here. 

We have analysed the three series by the method of differential approximants, 
utilising the scheme developed in Guttmann (1987). In table 2 we give the (unbiased) 
estimates of the exponent 2 - a, and critical point x, of the polygon generating function, 
as given by inhomogeneous first- and second-order differential approximants, denoted 
K = 1 and 2 respectively. We combine these entries using the method described in 
Guttmann (1987), to give the estimates 

xf = 0.143 680 56 (6) 

xf = 0.143 680 52 (5) 

2- (Y = 1.500 06 (5) 

2 - a = 1.500 10 (5) 

K = l  

K =2.  
(11) 

These estimates include ‘errors’ of two standard deviations, shown as the parenthesised 
uncertainty in the last digit. They do not, however, take account of the trend evident 

Table 2. Summary of exponent and critical point estimates using first- and second-order 
unbiased approximants. Biased critical point estimates were obtained by linear regression 
assuming the exponent is $ exactly. The right-hand column shows the number of distinct 
approximants used in the estimates given in the corresponding row. 

Exponent Number of 
n Critical point xf 2 - a  Biased x: approximants 

First-order approximants 
18 0.14368026(114) 1.500 30 (70) 0.143 680 74 12 
19 0.143 680 07 (130) 1.500 41 (83) 0.143 680 70 12 
20 0.143 680 09 (27) 1.500 39 (18) 0.143 680 65 11 
21 0.143 68048 (38) 1.500 13 (34) 0.143 680 66 7 
22 0.143 680 60 (23) 1.500 05 (19) 0.143 680 66 10 
23 0.143 680 09 (27) 1.50039(187) 0.143 68064 11 

25 0.143680610(207) 1.500034(170) 0.143 680651 7 
26 0.143 680 509 (237) 1.500 IO7 (214) 0.143 680627 8 

24 0.143 680 397 (238) 1.500 181 (173) 0.143680646 6 

27 0.143 680 563 (96) 1.500062 (84) 0.143 680637 6 
28 0.143680624(71) 1.500007 (68) 0.143 680631 10 
Second-order approximants 
22 0.143 680 039 (900) 1.500 414 (550) 0.143 680 677 8 
23 0.143 680 108 (384) 1.500 376 (250) 0.143 680 681 8 

25 0.143 680395 (212) 1.500192(161) 0.143680647 7 
26 0.143 680 544 (224) 1.500072 (194) 0.143680628 5 
27 0.143 680 603 (96) 1.500 023 (83) 0.143 680 630 7 

24 0.143 680 381 (86) 1.500 197 (65) 0.143 680630 6 

28 0.143 680 635 (92) 1.499 997 (95) 0.143 680 632 8 
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in table 2 in which the estimates of x, increase and those of 2-a decrease with 
increasing order. These trends are slight, but clearly sufficient to move 2 - (Y to precisely 
1 .  If we calculate x, assuming this value of the exponent, we obtain, by linear regression 
as discussed in Guttmann (1987) the results shown in the third column. These are 
combined to give 

xf = 0.143 680 64 (3) 

xf = 0.143 680 63 (1) 

K = l  

K = 1. 

This estimate gives for the connective constant p = 2.638 1585 (1). This may be com- 
pared with our biased estimate based on the SAW series of p = 2.638 1559 (1 5), and 
our earlier estimate, based on a 46-term series and an alternative method of analysis, 
of p =2.638 155 (25). These estimates do not quite include our latest estimate, which 
has an incredibly small uncertainty associated with it. This slight discrepancy is due 
to the aforementioned trends of increasing estimates with increasing order. However, 
we wish to use a reproducible algorithmic analysis method, and so we have not included 
the effect of this trend, which would involve some ad hoc correction to the above 
estimate. Rather, we propose to widen our error bars tenfold, which still gives the 
very precise estimate 

p = 2.638 1585 *O.OOO 0010. (13) 
In an earlier paper (Guttmann 1984), one of us suggested various surds that could 
correspond to the exact connective constant. Our result (13) effectively rules out all 
of these. 

We turn now to the analysis of the series for the caliper span. Privman and Rudnick 
obtained 28 terms in these series, and pointed out that non-analytic correction terms 
to the expected asymptotic forms can be expected. They therefore focused on the 
radius of gyration series for their estimate of v. We have analysed the series for d, 
and d i  by using our estimate of p above, and hence have obtained biased estimates 
of v. The alternative, of dividing term-by-term by p , ,  has the effect of increasing the 
influence of confluent corrections. Since we have a highly accurate value of p, we 
believe that the method we used is to be preferred. The results of this biased analysis 
applied to the series for d, are shown in table 3 for the first- and second-order 
approximants. From the series for d,  we obtain the exponent estimates 0.744* 
0.002 ( K  = 1) and 0.748 * 0.005 ( K  = 2). This exponent is 2 - (Y - v. Hence assuming 
2 - a = exactly, as discussed above, we obtain v = 0.752 * 0.006 encompassing both 
sets of estimates. The same analysis applied to the series for d i  yields for the exponent 
2 - (Y - 2 v  the estimate -0.0010 i 0.0010 ( K  = 1) and -0.005 i 0.005 ( K = 2), so that 
v = 0.755 *0.005. The results from the two series may be combined to give v = 
0.753 * 0.007. This is in excellent agreement with the exact value of $ (Nienhuis 1982, 
1984), and the result of Privman and Rudnick (1985) from the radius of gyration of 
0.750*0.0015, and our earlier estimate of 0.750 from the mean-square end-to-end 
distance series. Clearly, however, these are not the best series to estimate U. 

In our earlier paper 11, we devoted considerable effort to the analysis of the series 
in order to find a confluent exponent. Each method we tried seemed to give a different 
value for the correction to scaling exponent, though the value A = 0.84 was marginally 
favoured. With our longer series, we no longer find any convincing evidence of a 
particular non-analytic correction to scaling term. Indeed, the differential approximants 
prefer a single root at x, to a double root (which latter would correspond to a confluent 
exponent). This suggests that the only correction term is analytic, which is in precise 
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Table 3. Square lattice polygon linear-span generating function analysis. Biased differential 
approximants [ L /  N + A; N I ,  and [ L/ N + A ;  N + '4, N I ,  A = -1, 0, 1, with critical point 
fixed as described in the text. Defective approximants are marked with an asterisk. 

N 

.I 4 5 6 7 8 9 10 11 12 

First-order approximants ( K  = 1) 

L = l  - 1  0.7039* 0.7226 
0 0.7159 0.7164* 
1 0.7231 0.7231 

L = 2  -1 0.7564 0.7385 
0 0.7387 0.7832 
1 0.7385 0.7366 

L = 3  -1 0.7137 0.7287 
0 0.7385 0.7337 
1 0.7215 0.7368 

L e 4  -1 0.7386 0.7361 
0 0.7383 0.7378 
1 0.7365 0.7417 

L = 5  - 1  0.7326 0.7373 
0 0.7364 0.7432 
1 0.7314 0.7404 

L = 6  -1 0.7361 0.7399 
0 0.7360 0.7402 
1 0.7508 0.7397 

L = 7  -1 0.7364 0.7403 
0 0.7390 0.7404 
1 0.7402 0.7407 

L = 8  -1 0.7373 0.7398 
0 0.7407 0.7415 
1 0.7271 0.7428 

0.7273 
0.7359 
0.7375 

0.7364 
0.7367 
0.7375 

0.7373 
0.7410 
0.7401 

0.7426 
0.7401 
0.7402 

0.7410 
0.7408 
0.7412 

0.7407 
0.7415 
0.7443 

0.7395 
0.743 1 
0.7433 

0.7429 
0.7432 
0.7419 

0.7369 
0.7376 
0.7373 

0.7375 
0.7382 
0.7379 

0.7402 
0.7408 
0.7405 

0.7403 
0.7407 
0.7422 

0.7415 
0.7462 
0.7434 

0.7412 
0.7432 
0.7438 

0.7434 
0.7440 
0.7435 

0.7468 
0.7432 
0.7441 

0.7607* 
0.7394 
0.7386 

0.7368 
0.7398 
0.7991* 

0.7405 
0.7414 
0.7363 

0.7425 
0.7434 
0.7425 

0.7434 
0.7434 
0.7435 

0.7442 
0.7435 
0.7454 

0.7434 
0.7439 
0.7492 

0.7501 
0.7473 
0.7454 

Second-order approximants ( K  = 2) 

L =  1 -1 0.7353 0.7381* 0.7431 
0 0.7370 0.7415 0.7488 
1 0.7423 0.7487 0.7460 

L = 2  -1 0.7376 0.7349* 0.7487 
0 0.7362 0.7421 0.7466 
1 0.7389 0.7489 0.7441 

L = 3  -1 0.7359 0.7404 0.7429 
0 0.7338 0.7408 0.7445 
1 0.7414 0.7439 0.7459 

L = 4  -1 0.7334 0.7434 0.7433 
0 0.7378 0.7428 0.7420 
1 0.7455 0.7447 0.7456 

L = 5  -1 0.7330 0.7439 0.7395* 
0 0.7473 0.7436 0.7430 
1 0.7432 0.7395* 

0.7472 0.7460 
0.7436 
0.7457 

0.7565 0.7460 
0.7458 

0.8349* 
0.7459 

0.7449 

0.7422 

0.7422 0.6958* 
0.7233* 0.7389* 
0.7152* 0.7450 

0.7304 0.7405 
0.7031* 0.7415 
0.7383 0.7560 

0.7457 0.7439 
0.7444 0.7440 
0.7441 0.7429 

0.7257* 0.7439 
0.7440 0.7404 
0.7448 0.7462 

0.7435 0.7431 
0.7441 0.7461 
0.7795* 

0.7444 0.7448 
0.7493 
0.7400 

0.7489 
0.7479 

0.7446 

0.7441 0.7349* 
0.7443 0.7450 
0.7450 

0.7437 0.7326* 
0.7430 
0.7450 

0.743 1 
0.7434 

0.7449 
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Table 3. (continued) 

N 
~ 

4 4  5 6 7 8 9 10 1 1  12 

L = 6  - 1  
0 
1 

L = 7  - 1  
0 
1 

L = 5  - 1  
0 
I 

0.7356 
0.7381 
0.7440 

0.7424 
0.7439 
0.7451 

0.7452 
0.7446 
0.7636* 

0.7435 0.7424 
0.7449 0.7361* 
0.7451 

0.7445 0.7455 
0.7474 
0.7456 

0.7454 0.7469 
0.7394* 

agreement with Nienhuis’s prediction of a correction-to-scaling exponent of A = 1.5. 
This apparently contradictory statement is in fact entirely consistent, as the leading 
exponent is precisely s, so the confluent contribution simply adds in to the additive 
analytic background term. 

Such a confluent term does, however, give rise to a non-analytic correction to 
scaling term in the SAW generating function. Fitting the SAW series to the implied 
asymptotic form gives entirely consistent and satisfactory results, and it is proposed 
to report on this analysis subsequently. For the moment, we believe that there is little 
more numerical work that is worthwhile doing on this problem. The critical exponents 
given by Nienhuis are undoubtedly correct, and the connective constant has been 
attained to a degree of accuracy rivalling that of the fine-structure constant. 

We would like to thank Webster Computer Corp Pty Ltd for the loan of their excellent 
disc controller, and to record our gratitude for the considerable assistance rendered 
by Darryl Chivers, David Pennington and John Wastell of the University Computing 
Services in helping us run our resource-heavy program on a variety of computers. This 
work was supported by the Australian Research Grants Scheme through a grant to 
one of us (AJG). 
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